/* Copyright (C) 2013 Kristian Lauszus, TKJ Electronics. All rights reserved. This software may be distributed and modified under the terms of the GNU General Public License version 2 (GPL2) as published by the Free Software Foundation and appearing in the file GPL2.TXT included in the packaging of this file. Please note that GPL2 Section 2[b] requires that all works based on this software must also be made publicly available under the terms of the GPL2 ("Copyleft"). Contact information ------------------- Kristian Lauszus, TKJ Electronics Web : http://www.tkjelectronics.com e-mail : kristianl@tkjelectronics.com */ #include "XBOXOLD.h" // To enable serial debugging see "settings.h" //#define EXTRADEBUG // Uncomment to get even more debugging data //#define PRINTREPORT // Uncomment to print the report send by the Xbox controller /** Buttons on the controllers */ const uint8_t XBOXOLD_BUTTONS[] PROGMEM = { 0x01, // UP 0x08, // RIGHT 0x02, // DOWN 0x04, // LEFT 0x20, // BACK 0x10, // START 0x40, // L3 0x80, // R3 // A, B, X, Y, BLACK, WHITE, L1, and R1 are analog buttons 4, // BLACK 5, // WHTIE 6, // L1 7, // R1 1, // B 0, // A 2, // X 3, // Y }; XBOXOLD::XBOXOLD(USB *p) : pUsb(p), // pointer to USB class instance - mandatory bAddress(0), // device address - mandatory bNumEP(1), // If config descriptor needs to be parsed qNextPollTime(0), // Reset NextPollTime pollInterval(0), bPollEnable(false) { // don't start polling before dongle is connected for(uint8_t i = 0; i < XBOX_MAX_ENDPOINTS; i++) { epInfo[i].epAddr = 0; epInfo[i].maxPktSize = (i) ? 0 : 8; epInfo[i].bmSndToggle = 0; epInfo[i].bmRcvToggle = 0; epInfo[i].bmNakPower = (i) ? USB_NAK_NOWAIT : USB_NAK_MAX_POWER; } if(pUsb) // register in USB subsystem pUsb->RegisterDeviceClass(this); //set devConfig[] entry } uint8_t XBOXOLD::Init(uint8_t parent, uint8_t port, bool lowspeed) { uint8_t buf[sizeof (USB_DEVICE_DESCRIPTOR)]; USB_DEVICE_DESCRIPTOR * udd = reinterpret_cast(buf); uint8_t rcode; UsbDevice *p = NULL; EpInfo *oldep_ptr = NULL; uint16_t PID; uint16_t VID; uint8_t num_of_conf; // Number of configurations // get memory address of USB device address pool AddressPool &addrPool = pUsb->GetAddressPool(); #ifdef EXTRADEBUG Notify(PSTR("\r\nXBOXUSB Init"), 0x80); #endif // check if address has already been assigned to an instance if(bAddress) { #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nAddress in use"), 0x80); #endif return USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE; } // Get pointer to pseudo device with address 0 assigned p = addrPool.GetUsbDevicePtr(0); if(!p) { #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nAddress not found"), 0x80); #endif return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; } if(!p->epinfo) { #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nepinfo is null"), 0x80); #endif return USB_ERROR_EPINFO_IS_NULL; } // Save old pointer to EP_RECORD of address 0 oldep_ptr = p->epinfo; // Temporary assign new pointer to epInfo to p->epinfo in order to avoid toggle inconsistence p->epinfo = epInfo; p->lowspeed = lowspeed; // Get device descriptor rcode = pUsb->getDevDescr(0, 0, sizeof (USB_DEVICE_DESCRIPTOR), (uint8_t*)buf); // Get device descriptor - addr, ep, nbytes, data // Restore p->epinfo p->epinfo = oldep_ptr; if(rcode) goto FailGetDevDescr; VID = udd->idVendor; PID = udd->idProduct; if(!VIDPIDOK(VID, PID)) // Check if VID and PID match goto FailUnknownDevice; // Allocate new address according to device class bAddress = addrPool.AllocAddress(parent, false, port); if(!bAddress) return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL; // Extract Max Packet Size from device descriptor epInfo[0].maxPktSize = udd->bMaxPacketSize0; // Assign new address to the device rcode = pUsb->setAddr(0, 0, bAddress); if(rcode) { p->lowspeed = false; addrPool.FreeAddress(bAddress); bAddress = 0; #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nsetAddr: "), 0x80); D_PrintHex (rcode, 0x80); #endif return rcode; } #ifdef EXTRADEBUG Notify(PSTR("\r\nAddr: "), 0x80); D_PrintHex (bAddress, 0x80); #endif //delay(300); // Spec says you should wait at least 200ms p->lowspeed = false; //get pointer to assigned address record p = addrPool.GetUsbDevicePtr(bAddress); if(!p) return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; p->lowspeed = lowspeed; // Assign epInfo to epinfo pointer - only EP0 is known rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo); if(rcode) goto FailSetDevTblEntry; /* We better go and parse configuration values, as there are at least two kind of controllers that use different endpoints, so using hardcoded values cause the usb host to miss all input reports from those controllers. As an example: - 045e:0289 uses EP 1 for IN and EP 2 for OUT - but 045e:0202 uses both EP 2 for IN and OUT */ num_of_conf = udd->bNumConfigurations; // Number of configurations USBTRACE2("NC:", num_of_conf); // Check if attached device is a Xbox controller and fill endpoint data structure for(uint8_t i = 0; i < num_of_conf; i++) { ConfigDescParser<0, 0, 0, 0> confDescrParser(this); // Allow all devices, as we have already verified that it is a Xbox controller from the VID and PID rcode = pUsb->getConfDescr(bAddress, 0, i, &confDescrParser); if(rcode) // Check error code goto FailGetConfDescr; if(bNumEP >= XBOX_MAX_ENDPOINTS) // All endpoints extracted break; } if(bNumEP < XBOX_MAX_ENDPOINTS) goto FailUnknownDevice; rcode = pUsb->setEpInfoEntry(bAddress, bNumEP, epInfo); if(rcode) goto FailSetDevTblEntry; delay(200); // Give time for address change rcode = pUsb->setConf(bAddress, epInfo[ XBOX_CONTROL_PIPE ].epAddr, bConfNum); if(rcode) goto FailSetConfDescr; #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nXbox Controller Connected\r\n"), 0x80); #endif if(pFuncOnInit) pFuncOnInit(); // Call the user function XboxConnected = true; bPollEnable = true; return 0; // Successful configuration /* Diagnostic messages */ FailGetDevDescr: #ifdef DEBUG_USB_HOST NotifyFailGetDevDescr(); goto Fail; #endif FailSetDevTblEntry: #ifdef DEBUG_USB_HOST NotifyFailSetDevTblEntry(); goto Fail; #endif FailGetConfDescr: #ifdef DEBUG_USB_HOST NotifyFailGetConfDescr(); goto Fail; #endif FailSetConfDescr: #ifdef DEBUG_USB_HOST NotifyFailSetConfDescr(); #endif goto Fail; FailUnknownDevice: #ifdef DEBUG_USB_HOST NotifyFailUnknownDevice(VID, PID); #endif rcode = USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED; Fail: #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nXbox Init Failed, error code: "), 0x80); NotifyFail(rcode); #endif Release(); return rcode; } /* Extracts endpoint information from config descriptor */ void XBOXOLD::EndpointXtract(uint8_t conf, uint8_t iface __attribute__((unused)), uint8_t alt __attribute__((unused)), uint8_t proto __attribute__((unused)), const USB_ENDPOINT_DESCRIPTOR *pep) { bConfNum = conf; uint8_t index; if((pep->bmAttributes & bmUSB_TRANSFER_TYPE) == USB_TRANSFER_TYPE_INTERRUPT) { // Interrupt endpoint index = (pep->bEndpointAddress & 0x80) == 0x80 ? XBOX_INPUT_PIPE : XBOX_OUTPUT_PIPE; // Set the endpoint index } else return; // Fill the rest of endpoint data structure epInfo[index].epAddr = (pep->bEndpointAddress & 0x0F); epInfo[index].maxPktSize = (uint8_t)pep->wMaxPacketSize; #ifdef EXTRADEBUG PrintEndpointDescriptor(pep); #endif if(pollInterval < pep->bInterval) // Set the polling interval as the largest polling interval obtained from endpoints pollInterval = pep->bInterval; bNumEP++; } void XBOXOLD::PrintEndpointDescriptor(const USB_ENDPOINT_DESCRIPTOR* ep_ptr __attribute__((unused))) { #ifdef EXTRADEBUG Notify(PSTR("\r\nEndpoint descriptor:"), 0x80); Notify(PSTR("\r\nLength:\t\t"), 0x80); D_PrintHex (ep_ptr->bLength, 0x80); Notify(PSTR("\r\nType:\t\t"), 0x80); D_PrintHex (ep_ptr->bDescriptorType, 0x80); Notify(PSTR("\r\nAddress:\t"), 0x80); D_PrintHex (ep_ptr->bEndpointAddress, 0x80); Notify(PSTR("\r\nAttributes:\t"), 0x80); D_PrintHex (ep_ptr->bmAttributes, 0x80); Notify(PSTR("\r\nMaxPktSize:\t"), 0x80); D_PrintHex (ep_ptr->wMaxPacketSize, 0x80); Notify(PSTR("\r\nPoll Intrv:\t"), 0x80); D_PrintHex (ep_ptr->bInterval, 0x80); #endif } /* Performs a cleanup after failed Init() attempt */ uint8_t XBOXOLD::Release() { XboxConnected = false; pUsb->GetAddressPool().FreeAddress(bAddress); bAddress = 0; bNumEP = 1; // Must have to be reset to 1 qNextPollTime = 0; // Reset next poll time pollInterval = 0; bPollEnable = false; #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nXbox Controller Disconnected\r\n"), 0x80); #endif return 0; } uint8_t XBOXOLD::Poll() { uint8_t rcode = 0; if(!bPollEnable) return 0; if((int32_t)((uint32_t)millis() - qNextPollTime) >= 0L) { // Do not poll if shorter than polling interval qNextPollTime = (uint32_t)millis() + pollInterval; // Set new poll time uint16_t length = (uint16_t)epInfo[ XBOX_INPUT_PIPE ].maxPktSize; // Read the maximum packet size from the endpoint uint8_t rcode = pUsb->inTransfer(bAddress, epInfo[ XBOX_INPUT_PIPE ].epAddr, &length, readBuf, pollInterval); if(!rcode) { readReport(); #ifdef PRINTREPORT // Uncomment "#define PRINTREPORT" to print the report send by the Xbox ONE Controller printReport(length); #endif } #ifdef DEBUG_USB_HOST else if(rcode != hrNAK) { // Not a matter of no update to send Notify(PSTR("\r\nXbox Poll Failed, error code: "), 0x80); NotifyFail(rcode); } #endif } return rcode; } void XBOXOLD::readReport() { ButtonState = readBuf[2]; for(uint8_t i = 0; i < sizeof (buttonValues); i++) buttonValues[i] = readBuf[i + 4]; // A, B, X, Y, BLACK, WHITE, L1, and R1 hatValue[LeftHatX] = (int16_t)(((uint16_t)readBuf[13] << 8) | readBuf[12]); hatValue[LeftHatY] = (int16_t)(((uint16_t)readBuf[15] << 8) | readBuf[14]); hatValue[RightHatX] = (int16_t)(((uint16_t)readBuf[17] << 8) | readBuf[16]); hatValue[RightHatY] = (int16_t)(((uint16_t)readBuf[19] << 8) | readBuf[18]); //Notify(PSTR("\r\nButtonState"), 0x80); //PrintHex(ButtonState, 0x80); if(ButtonState != OldButtonState || memcmp(buttonValues, oldButtonValues, sizeof (buttonValues)) != 0) { ButtonClickState = ButtonState & ~OldButtonState; // Update click state variable OldButtonState = ButtonState; for(uint8_t i = 0; i < sizeof (buttonValues); i++) { if(oldButtonValues[i] == 0 && buttonValues[i] != 0) buttonClicked[i] = true; // Update A, B, X, Y, BLACK, WHITE, L1, and R1 click state oldButtonValues[i] = buttonValues[i]; } } } void XBOXOLD::printReport(uint16_t length __attribute__((unused))) { //Uncomment "#define PRINTREPORT" to print the report send by the Xbox controller #ifdef PRINTREPORT if(readBuf == NULL || !length) return; for(uint8_t i = 0; i < length; i++) { D_PrintHex (readBuf[i], 0x80); Notify(PSTR(" "), 0x80); } Notify(PSTR("\r\n"), 0x80); #endif } int8_t XBOXOLD::getAnalogIndex(ButtonEnum b) { // For legacy reasons these mapping indices not match up, // as the original code uses L1/R1 for the triggers and // L2/R2 for the white/black buttons. To fix these new enums // we have to transpose the keys before passing them through // the button index function switch (b) { case(LT): b = L1; break; // normally L2 case(RT): b = R1; break; // normally R2 case(LB): b = WHITE; break; // normally L1 case(RB): b = BLACK; break; // normally R1 default: break; } // A, B, X, Y, BLACK, WHITE, L1, and R1 are analog buttons const int8_t index = ButtonIndex(b); switch (index) { case ButtonIndex(A): case ButtonIndex(B): case ButtonIndex(X): case ButtonIndex(Y): case ButtonIndex(BLACK): case ButtonIndex(WHITE): case ButtonIndex(L1): case ButtonIndex(R1): return index; default: break; } return -1; } int8_t XBOXOLD::getDigitalIndex(ButtonEnum b) { // UP, DOWN, LEFT, RIGHT, START, BACK, L3, and R3 are digital buttons const int8_t index = ButtonIndex(b); switch (index) { case ButtonIndex(UP): case ButtonIndex(DOWN): case ButtonIndex(LEFT): case ButtonIndex(RIGHT): case ButtonIndex(START): case ButtonIndex(BACK): case ButtonIndex(L3): case ButtonIndex(R3): return index; default: break; } return -1; } uint8_t XBOXOLD::getButtonPress(ButtonEnum b) { const int8_t analogIndex = getAnalogIndex(b); if (analogIndex >= 0) { const uint8_t buttonIndex = pgm_read_byte(&XBOXOLD_BUTTONS[analogIndex]); return buttonValues[buttonIndex]; } const int8_t digitalIndex = getDigitalIndex(b); if (digitalIndex >= 0) { const uint8_t buttonMask = pgm_read_byte(&XBOXOLD_BUTTONS[digitalIndex]); return (ButtonState & buttonMask); } return 0; } bool XBOXOLD::getButtonClick(ButtonEnum b) { const int8_t analogIndex = getAnalogIndex(b); if (analogIndex >= 0) { const uint8_t buttonIndex = pgm_read_byte(&XBOXOLD_BUTTONS[analogIndex]); if (buttonClicked[buttonIndex]) { buttonClicked[buttonIndex] = false; return true; } return false; } const int8_t digitalIndex = getDigitalIndex(b); if (digitalIndex >= 0) { const uint8_t mask = pgm_read_byte(&XBOXOLD_BUTTONS[digitalIndex]); const bool click = (ButtonClickState & mask); ButtonClickState &= ~mask; return click; } return 0; } int16_t XBOXOLD::getAnalogHat(AnalogHatEnum a) { return hatValue[a]; } /* Xbox Controller commands */ void XBOXOLD::XboxCommand(uint8_t* data, uint16_t nbytes) { //bmRequest = Host to device (0x00) | Class (0x20) | Interface (0x01) = 0x21, bRequest = Set Report (0x09), Report ID (0x00), Report Type (Output 0x02), interface (0x00), datalength, datalength, data) pUsb->ctrlReq(bAddress, epInfo[XBOX_CONTROL_PIPE].epAddr, bmREQ_HID_OUT, HID_REQUEST_SET_REPORT, 0x00, 0x02, 0x00, nbytes, nbytes, data, NULL); } void XBOXOLD::setRumbleOn(uint8_t lValue, uint8_t rValue) { uint8_t writeBuf[6]; writeBuf[0] = 0x00; writeBuf[1] = 0x06; writeBuf[2] = 0x00; writeBuf[3] = rValue; // small weight writeBuf[4] = 0x00; writeBuf[5] = lValue; // big weight XboxCommand(writeBuf, 6); }