Initial commit of Arduino libraries

This commit is contained in:
Sam
2025-05-23 10:47:41 +10:00
commit 5bfce5fc3e
2476 changed files with 1108481 additions and 0 deletions

View File

@@ -0,0 +1,201 @@
/*
RadioLib LoRaWAN End Device Reference Example
This example joins a LoRaWAN network and will send
uplink packets. Before you start, you will have to
register your device at https://www.thethingsnetwork.org/
After your device is registered, you can run this example.
The device will join the network and start uploading data.
Also, most of the possible and available functions are
shown here for reference.
LoRaWAN v1.0.4/v1.1 requires the use of EEPROM (persistent storage).
Running this examples REQUIRES you to check "Resets DevNonces"
on your LoRaWAN dashboard. Refer to the notes or the
network's documentation on how to do this.
To comply with LoRaWAN's persistent storage, refer to
https://github.com/radiolib-org/radiolib-persistence
For default module settings, see the wiki page
https://github.com/jgromes/RadioLib/wiki/Default-configuration
For full API reference, see the GitHub Pages
https://jgromes.github.io/RadioLib/
For LoRaWAN details, see the wiki page
https://github.com/jgromes/RadioLib/wiki/LoRaWAN
*/
#include "config.h"
// include the library
#include <RadioLib.h>
void setup() {
Serial.begin(115200);
while(!Serial); // Wait for serial to be initialised
delay(5000); // Give time to switch to the serial monitor
Serial.println(F("\nSetup"));
int16_t state = 0; // return value for calls to RadioLib
Serial.println(F("Initialise the radio"));
state = radio.begin();
debug(state != RADIOLIB_ERR_NONE, F("Initialise radio failed"), state, true);
// Override the default join rate
uint8_t joinDR = 4;
// Setup the OTAA session information
node.beginOTAA(joinEUI, devEUI, nwkKey, appKey);
Serial.println(F("Join ('login') the LoRaWAN Network"));
state = node.activateOTAA(joinDR);
debug(state != RADIOLIB_LORAWAN_NEW_SESSION, F("Join failed"), state, true);
// Print the DevAddr
Serial.print("[LoRaWAN] DevAddr: ");
Serial.println((unsigned long)node.getDevAddr(), HEX);
// Enable the ADR algorithm (on by default which is preferable)
node.setADR(true);
// Set a datarate to start off with
node.setDatarate(5);
// Manages uplink intervals to the TTN Fair Use Policy
node.setDutyCycle(true, 1250);
// Update dwell time limits - 400ms is the limit for the US
node.setDwellTime(true, 400);
Serial.println(F("Ready!\n"));
}
void loop() {
int16_t state = RADIOLIB_ERR_NONE;
// set battery fill level - the LoRaWAN network server
// may periodically request this information
// 0 = external power source
// 1 = lowest (empty battery)
// 254 = highest (full battery)
// 255 = unable to measure
uint8_t battLevel = 146;
node.setDeviceStatus(battLevel);
// This is the place to gather the sensor inputs
// Instead of reading any real sensor, we just generate some random numbers as example
uint8_t value1 = radio.random(100);
uint16_t value2 = radio.random(2000);
// Build payload byte array
uint8_t uplinkPayload[3];
uplinkPayload[0] = value1;
uplinkPayload[1] = highByte(value2); // See notes for high/lowByte functions
uplinkPayload[2] = lowByte(value2);
uint8_t downlinkPayload[10]; // Make sure this fits your plans!
size_t downlinkSize; // To hold the actual payload size received
// you can also retrieve additional information about an uplink or
// downlink by passing a reference to LoRaWANEvent_t structure
LoRaWANEvent_t uplinkDetails;
LoRaWANEvent_t downlinkDetails;
uint8_t fPort = 10;
// Retrieve the last uplink frame counter
uint32_t fCntUp = node.getFCntUp();
// Send a confirmed uplink on the second uplink
// and also request the LinkCheck and DeviceTime MAC commands
Serial.println(F("Sending uplink"));
if(fCntUp == 1) {
Serial.println(F("and requesting LinkCheck and DeviceTime"));
node.sendMacCommandReq(RADIOLIB_LORAWAN_MAC_LINK_CHECK);
node.sendMacCommandReq(RADIOLIB_LORAWAN_MAC_DEVICE_TIME);
state = node.sendReceive(uplinkPayload, sizeof(uplinkPayload), fPort, downlinkPayload, &downlinkSize, true, &uplinkDetails, &downlinkDetails);
} else {
state = node.sendReceive(uplinkPayload, sizeof(uplinkPayload), fPort, downlinkPayload, &downlinkSize, false, &uplinkDetails, &downlinkDetails);
}
debug(state < RADIOLIB_ERR_NONE, F("Error in sendReceive"), state, false);
// Check if a downlink was received
// (state 0 = no downlink, state 1/2 = downlink in window Rx1/Rx2)
if(state > 0) {
Serial.println(F("Received a downlink"));
// Did we get a downlink with data for us
if(downlinkSize > 0) {
Serial.println(F("Downlink data: "));
arrayDump(downlinkPayload, downlinkSize);
} else {
Serial.println(F("<MAC commands only>"));
}
// print RSSI (Received Signal Strength Indicator)
Serial.print(F("[LoRaWAN] RSSI:\t\t"));
Serial.print(radio.getRSSI());
Serial.println(F(" dBm"));
// print SNR (Signal-to-Noise Ratio)
Serial.print(F("[LoRaWAN] SNR:\t\t"));
Serial.print(radio.getSNR());
Serial.println(F(" dB"));
// print extra information about the event
Serial.println(F("[LoRaWAN] Event information:"));
Serial.print(F("[LoRaWAN] Confirmed:\t"));
Serial.println(downlinkDetails.confirmed);
Serial.print(F("[LoRaWAN] Confirming:\t"));
Serial.println(downlinkDetails.confirming);
Serial.print(F("[LoRaWAN] Datarate:\t"));
Serial.println(downlinkDetails.datarate);
Serial.print(F("[LoRaWAN] Frequency:\t"));
Serial.print(downlinkDetails.freq, 3);
Serial.println(F(" MHz"));
Serial.print(F("[LoRaWAN] Frame count:\t"));
Serial.println(downlinkDetails.fCnt);
Serial.print(F("[LoRaWAN] Port:\t\t"));
Serial.println(downlinkDetails.fPort);
Serial.print(F("[LoRaWAN] Time-on-air: \t"));
Serial.print(node.getLastToA());
Serial.println(F(" ms"));
Serial.print(F("[LoRaWAN] Rx window: \t"));
Serial.println(state);
uint8_t margin = 0;
uint8_t gwCnt = 0;
if(node.getMacLinkCheckAns(&margin, &gwCnt) == RADIOLIB_ERR_NONE) {
Serial.print(F("[LoRaWAN] LinkCheck margin:\t"));
Serial.println(margin);
Serial.print(F("[LoRaWAN] LinkCheck count:\t"));
Serial.println(gwCnt);
}
uint32_t networkTime = 0;
uint8_t fracSecond = 0;
if(node.getMacDeviceTimeAns(&networkTime, &fracSecond, true) == RADIOLIB_ERR_NONE) {
Serial.print(F("[LoRaWAN] DeviceTime Unix:\t"));
Serial.println(networkTime);
Serial.print(F("[LoRaWAN] DeviceTime second:\t1/"));
Serial.println(fracSecond);
}
} else {
Serial.println(F("[LoRaWAN] No downlink received"));
}
// wait before sending another packet
uint32_t minimumDelay = uplinkIntervalSeconds * 1000UL;
uint32_t interval = node.timeUntilUplink(); // calculate minimum duty cycle delay (per FUP & law!)
uint32_t delayMs = max(interval, minimumDelay); // cannot send faster than duty cycle allows
Serial.print(F("[LoRaWAN] Next uplink in "));
Serial.print(delayMs/1000);
Serial.println(F(" seconds\n"));
delay(delayMs);
}

View File

@@ -0,0 +1,145 @@
#ifndef _RADIOLIB_EX_LORAWAN_CONFIG_H
#define _RADIOLIB_EX_LORAWAN_CONFIG_H
#include <RadioLib.h>
// first you have to set your radio model and pin configuration
// this is provided just as a default example
SX1278 radio = new Module(10, 2, 9, 3);
// if you have RadioBoards (https://github.com/radiolib-org/RadioBoards)
// and are using one of the supported boards, you can do the following:
/*
#define RADIO_BOARD_AUTO
#include <RadioBoards.h>
Radio radio = new RadioModule();
*/
// how often to send an uplink - consider legal & FUP constraints - see notes
const uint32_t uplinkIntervalSeconds = 5UL * 60UL; // minutes x seconds
// joinEUI - previous versions of LoRaWAN called this AppEUI
// for development purposes you can use all zeros - see wiki for details
#define RADIOLIB_LORAWAN_JOIN_EUI 0x0000000000000000
// the Device EUI & two keys can be generated on the TTN console
#ifndef RADIOLIB_LORAWAN_DEV_EUI // Replace with your Device EUI
#define RADIOLIB_LORAWAN_DEV_EUI 0x---------------
#endif
#ifndef RADIOLIB_LORAWAN_APP_KEY // Replace with your App Key
#define RADIOLIB_LORAWAN_APP_KEY 0x--, 0x--, 0x--, 0x--, 0x--, 0x--, 0x--, 0x--, 0x--, 0x--, 0x--, 0x--, 0x--, 0x--, 0x--, 0x--
#endif
#ifndef RADIOLIB_LORAWAN_NWK_KEY // Put your Nwk Key here
#define RADIOLIB_LORAWAN_NWK_KEY 0x--, 0x--, 0x--, 0x--, 0x--, 0x--, 0x--, 0x--, 0x--, 0x--, 0x--, 0x--, 0x--, 0x--, 0x--, 0x--
#endif
// for the curious, the #ifndef blocks allow for automated testing &/or you can
// put your EUI & keys in to your platformio.ini - see wiki for more tips
// regional choices: EU868, US915, AU915, AS923, AS923_2, AS923_3, AS923_4, IN865, KR920, CN500
const LoRaWANBand_t Region = EU868;
const uint8_t subBand = 0; // For US915, change this to 2, otherwise leave on 0
// ============================================================================
// Below is to support the sketch - only make changes if the notes say so ...
// copy over the EUI's & keys in to the something that will not compile if incorrectly formatted
uint64_t joinEUI = RADIOLIB_LORAWAN_JOIN_EUI;
uint64_t devEUI = RADIOLIB_LORAWAN_DEV_EUI;
uint8_t appKey[] = { RADIOLIB_LORAWAN_APP_KEY };
uint8_t nwkKey[] = { RADIOLIB_LORAWAN_NWK_KEY };
// create the LoRaWAN node
LoRaWANNode node(&radio, &Region, subBand);
// result code to text - these are error codes that can be raised when using LoRaWAN
// however, RadioLib has many more - see https://jgromes.github.io/RadioLib/group__status__codes.html for a complete list
String stateDecode(const int16_t result) {
switch (result) {
case RADIOLIB_ERR_NONE:
return "ERR_NONE";
case RADIOLIB_ERR_CHIP_NOT_FOUND:
return "ERR_CHIP_NOT_FOUND";
case RADIOLIB_ERR_PACKET_TOO_LONG:
return "ERR_PACKET_TOO_LONG";
case RADIOLIB_ERR_RX_TIMEOUT:
return "ERR_RX_TIMEOUT";
case RADIOLIB_ERR_CRC_MISMATCH:
return "ERR_CRC_MISMATCH";
case RADIOLIB_ERR_INVALID_BANDWIDTH:
return "ERR_INVALID_BANDWIDTH";
case RADIOLIB_ERR_INVALID_SPREADING_FACTOR:
return "ERR_INVALID_SPREADING_FACTOR";
case RADIOLIB_ERR_INVALID_CODING_RATE:
return "ERR_INVALID_CODING_RATE";
case RADIOLIB_ERR_INVALID_FREQUENCY:
return "ERR_INVALID_FREQUENCY";
case RADIOLIB_ERR_INVALID_OUTPUT_POWER:
return "ERR_INVALID_OUTPUT_POWER";
case RADIOLIB_ERR_NETWORK_NOT_JOINED:
return "RADIOLIB_ERR_NETWORK_NOT_JOINED";
case RADIOLIB_ERR_DOWNLINK_MALFORMED:
return "RADIOLIB_ERR_DOWNLINK_MALFORMED";
case RADIOLIB_ERR_INVALID_REVISION:
return "RADIOLIB_ERR_INVALID_REVISION";
case RADIOLIB_ERR_INVALID_PORT:
return "RADIOLIB_ERR_INVALID_PORT";
case RADIOLIB_ERR_NO_RX_WINDOW:
return "RADIOLIB_ERR_NO_RX_WINDOW";
case RADIOLIB_ERR_INVALID_CID:
return "RADIOLIB_ERR_INVALID_CID";
case RADIOLIB_ERR_UPLINK_UNAVAILABLE:
return "RADIOLIB_ERR_UPLINK_UNAVAILABLE";
case RADIOLIB_ERR_COMMAND_QUEUE_FULL:
return "RADIOLIB_ERR_COMMAND_QUEUE_FULL";
case RADIOLIB_ERR_COMMAND_QUEUE_ITEM_NOT_FOUND:
return "RADIOLIB_ERR_COMMAND_QUEUE_ITEM_NOT_FOUND";
case RADIOLIB_ERR_JOIN_NONCE_INVALID:
return "RADIOLIB_ERR_JOIN_NONCE_INVALID";
case RADIOLIB_ERR_N_FCNT_DOWN_INVALID:
return "RADIOLIB_ERR_N_FCNT_DOWN_INVALID";
case RADIOLIB_ERR_A_FCNT_DOWN_INVALID:
return "RADIOLIB_ERR_A_FCNT_DOWN_INVALID";
case RADIOLIB_ERR_DWELL_TIME_EXCEEDED:
return "RADIOLIB_ERR_DWELL_TIME_EXCEEDED";
case RADIOLIB_ERR_CHECKSUM_MISMATCH:
return "RADIOLIB_ERR_CHECKSUM_MISMATCH";
case RADIOLIB_ERR_NO_JOIN_ACCEPT:
return "RADIOLIB_ERR_NO_JOIN_ACCEPT";
case RADIOLIB_LORAWAN_SESSION_RESTORED:
return "RADIOLIB_LORAWAN_SESSION_RESTORED";
case RADIOLIB_LORAWAN_NEW_SESSION:
return "RADIOLIB_LORAWAN_NEW_SESSION";
case RADIOLIB_ERR_NONCES_DISCARDED:
return "RADIOLIB_ERR_NONCES_DISCARDED";
case RADIOLIB_ERR_SESSION_DISCARDED:
return "RADIOLIB_ERR_SESSION_DISCARDED";
}
return "See https://jgromes.github.io/RadioLib/group__status__codes.html";
}
// helper function to display any issues
void debug(bool failed, const __FlashStringHelper* message, int state, bool halt) {
if(failed) {
Serial.print(message);
Serial.print(" - ");
Serial.print(stateDecode(state));
Serial.print(" (");
Serial.print(state);
Serial.println(")");
while(halt) { delay(1); }
}
}
// helper function to display a byte array
void arrayDump(uint8_t *buffer, uint16_t len) {
for(uint16_t c = 0; c < len; c++) {
char b = buffer[c];
if(b < 0x10) { Serial.print('0'); }
Serial.print(b, HEX);
}
Serial.println();
}
#endif