Initial commit of Arduino libraries

This commit is contained in:
Sam
2025-05-23 10:47:41 +10:00
commit 5bfce5fc3e
2476 changed files with 1108481 additions and 0 deletions

View File

@@ -0,0 +1,504 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Libraries
If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).
To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.
<one line to give the library's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
USA
Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the
library `Frob' (a library for tweaking knobs) written by James Random
Hacker.
<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice
That's all there is to it!

View File

@@ -0,0 +1,10 @@
:repository-owner: arduino-libraries
:repository-name: ArduinoMqttClient
= {repository-name} Library for Arduino =
image:https://github.com/{repository-owner}/{repository-name}/actions/workflows/check-arduino.yml/badge.svg["Check Arduino status", link="https://github.com/{repository-owner}/{repository-name}/actions/workflows/check-arduino.yml"]
image:https://github.com/{repository-owner}/{repository-name}/actions/workflows/compile-examples.yml/badge.svg["Compile Examples status", link="https://github.com/{repository-owner}/{repository-name}/actions/workflows/compile-examples.yml"]
image:https://github.com/{repository-owner}/{repository-name}/actions/workflows/spell-check.yml/badge.svg["Spell Check status", link="https://github.com/{repository-owner}/{repository-name}/actions/workflows/spell-check.yml"]
Allows you to send and receive MQTT messages using Arduino.

View File

@@ -0,0 +1,194 @@
/*
ArduinoMqttClient - WiFi Advanced Callback
This example connects to a MQTT broker and subscribes to a single topic,
it also publishes a message to another topic every 10 seconds.
When a message is received it prints the message to the Serial Monitor,
it uses the callback functionality of the library.
It also demonstrates how to set the will message, get/set QoS,
duplicate and retain values of messages.
The circuit:
- Arduino MKR 1000, MKR 1010 or Uno WiFi Rev2 board
This example code is in the public domain.
*/
#include <ArduinoMqttClient.h>
#if defined(ARDUINO_SAMD_MKRWIFI1010) || defined(ARDUINO_SAMD_NANO_33_IOT) || defined(ARDUINO_AVR_UNO_WIFI_REV2)
#include <WiFiNINA.h>
#elif defined(ARDUINO_SAMD_MKR1000)
#include <WiFi101.h>
#elif defined(ARDUINO_ARCH_ESP8266)
#include <ESP8266WiFi.h>
#elif defined(ARDUINO_PORTENTA_H7_M7) || defined(ARDUINO_NICLA_VISION) || defined(ARDUINO_ARCH_ESP32) || defined(ARDUINO_GIGA) || defined(ARDUINO_OPTA)
#include <WiFi.h>
#elif defined(ARDUINO_PORTENTA_C33)
#include <WiFiC3.h>
#elif defined(ARDUINO_UNOR4_WIFI)
#include <WiFiS3.h>
#endif
#include "arduino_secrets.h"
///////please enter your sensitive data in the Secret tab/arduino_secrets.h
char ssid[] = SECRET_SSID; // your network SSID (name)
char pass[] = SECRET_PASS; // your network password (use for WPA, or use as key for WEP)
// To connect with SSL/TLS:
// 1) Change WiFiClient to WiFiSSLClient.
// 2) Change port value from 1883 to 8883.
// 3) Change broker value to a server with a known SSL/TLS root certificate
// flashed in the WiFi module.
WiFiClient wifiClient;
MqttClient mqttClient(wifiClient);
const char broker[] = "test.mosquitto.org";
int port = 1883;
const char willTopic[] = "arduino/will";
const char inTopic[] = "arduino/in";
const char outTopic[] = "arduino/out";
const long interval = 10000;
unsigned long previousMillis = 0;
int count = 0;
void setup() {
//Initialize serial and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for native USB port only
}
// attempt to connect to WiFi network:
Serial.print("Attempting to connect to WPA SSID: ");
Serial.println(ssid);
while (WiFi.begin(ssid, pass) != WL_CONNECTED) {
// failed, retry
Serial.print(".");
delay(5000);
}
Serial.println("You're connected to the network");
Serial.println();
// You can provide a unique client ID, if not set the library uses Arduino-millis()
// Each client must have a unique client ID
// mqttClient.setId("clientId");
// You can provide a username and password for authentication
// mqttClient.setUsernamePassword("username", "password");
// By default the library connects with the "clean session" flag set,
// you can disable this behaviour by using
// mqttClient.setCleanSession(false);
// set a will message, used by the broker when the connection dies unexpectedly
// you must know the size of the message beforehand, and it must be set before connecting
String willPayload = "oh no!";
bool willRetain = true;
int willQos = 1;
mqttClient.beginWill(willTopic, willPayload.length(), willRetain, willQos);
mqttClient.print(willPayload);
mqttClient.endWill();
Serial.print("Attempting to connect to the MQTT broker: ");
Serial.println(broker);
if (!mqttClient.connect(broker, port)) {
Serial.print("MQTT connection failed! Error code = ");
Serial.println(mqttClient.connectError());
while (1);
}
Serial.println("You're connected to the MQTT broker!");
Serial.println();
// set the message receive callback
mqttClient.onMessage(onMqttMessage);
Serial.print("Subscribing to topic: ");
Serial.println(inTopic);
Serial.println();
// subscribe to a topic
// the second parameter sets the QoS of the subscription,
// the the library supports subscribing at QoS 0, 1, or 2
int subscribeQos = 1;
mqttClient.subscribe(inTopic, subscribeQos);
// topics can be unsubscribed using:
// mqttClient.unsubscribe(inTopic);
Serial.print("Waiting for messages on topic: ");
Serial.println(inTopic);
Serial.println();
}
void loop() {
// call poll() regularly to allow the library to receive MQTT messages and
// send MQTT keep alives which avoids being disconnected by the broker
mqttClient.poll();
// to avoid having delays in loop, we'll use the strategy from BlinkWithoutDelay
// see: File -> Examples -> 02.Digital -> BlinkWithoutDelay for more info
unsigned long currentMillis = millis();
if (currentMillis - previousMillis >= interval) {
// save the last time a message was sent
previousMillis = currentMillis;
String payload;
payload += "hello world!";
payload += " ";
payload += count;
Serial.print("Sending message to topic: ");
Serial.println(outTopic);
Serial.println(payload);
// send message, the Print interface can be used to set the message contents
// in this case we know the size ahead of time, so the message payload can be streamed
bool retained = false;
int qos = 1;
bool dup = false;
mqttClient.beginMessage(outTopic, payload.length(), retained, qos, dup);
mqttClient.print(payload);
mqttClient.endMessage();
Serial.println();
count++;
}
}
void onMqttMessage(int messageSize) {
// we received a message, print out the topic and contents
Serial.print("Received a message with topic '");
Serial.print(mqttClient.messageTopic());
Serial.print("', duplicate = ");
Serial.print(mqttClient.messageDup() ? "true" : "false");
Serial.print(", QoS = ");
Serial.print(mqttClient.messageQoS());
Serial.print(", retained = ");
Serial.print(mqttClient.messageRetain() ? "true" : "false");
Serial.print("', length ");
Serial.print(messageSize);
Serial.println(" bytes:");
// use the Stream interface to print the contents
while (mqttClient.available()) {
Serial.print((char)mqttClient.read());
}
Serial.println();
Serial.println();
}

View File

@@ -0,0 +1,2 @@
#define SECRET_SSID ""
#define SECRET_PASS ""

View File

@@ -0,0 +1,150 @@
/*
ArduinoMqttClient - WiFi Echo
This example connects to a MQTT broker and subscribes to a single topic,
it also publishes a message to the same topic once a second.
When a message is received it prints the message to the Serial Monitor.
The circuit:
- Arduino MKR 1000, MKR 1010 or Uno WiFi Rev2 board
This example code is in the public domain.
*/
#include <ArduinoMqttClient.h>
#if defined(ARDUINO_SAMD_MKRWIFI1010) || defined(ARDUINO_SAMD_NANO_33_IOT) || defined(ARDUINO_AVR_UNO_WIFI_REV2)
#include <WiFiNINA.h>
#elif defined(ARDUINO_SAMD_MKR1000)
#include <WiFi101.h>
#elif defined(ARDUINO_ARCH_ESP8266)
#include <ESP8266WiFi.h>
#elif defined(ARDUINO_PORTENTA_H7_M7) || defined(ARDUINO_NICLA_VISION) || defined(ARDUINO_ARCH_ESP32) || defined(ARDUINO_GIGA) || defined(ARDUINO_OPTA)
#include <WiFi.h>
#elif defined(ARDUINO_PORTENTA_C33)
#include <WiFiC3.h>
#elif defined(ARDUINO_UNOR4_WIFI)
#include <WiFiS3.h>
#endif
#include "arduino_secrets.h"
///////please enter your sensitive data in the Secret tab/arduino_secrets.h
char ssid[] = SECRET_SSID; // your network SSID (name)
char pass[] = SECRET_PASS; // your network password (use for WPA, or use as key for WEP)
// To connect with SSL/TLS:
// 1) Change WiFiClient to WiFiSSLClient.
// 2) Change port value from 1883 to 8883.
// 3) Change broker value to a server with a known SSL/TLS root certificate
// flashed in the WiFi module.
WiFiClient wifiClient;
MqttClient mqttClient(wifiClient);
const char broker[] = "test.mosquitto.org";
int port = 1883;
const char topic[] = "arduino/echo";
const long interval = 1000;
unsigned long previousMillis = 0;
int count = 0;
void setup() {
//Initialize serial and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for native USB port only
}
// attempt to connect to WiFi network:
Serial.print("Attempting to connect to WPA SSID: ");
Serial.println(ssid);
while (WiFi.begin(ssid, pass) != WL_CONNECTED) {
// failed, retry
Serial.print(".");
delay(5000);
}
Serial.println("You're connected to the network");
Serial.println();
// You can provide a unique client ID, if not set the library uses Arduino-millis()
// Each client must have a unique client ID
// mqttClient.setId("clientId");
// You can provide a username and password for authentication
// mqttClient.setUsernamePassword("username", "password");
Serial.print("Attempting to connect to the MQTT broker: ");
Serial.println(broker);
if (!mqttClient.connect(broker, port)) {
Serial.print("MQTT connection failed! Error code = ");
Serial.println(mqttClient.connectError());
while (1);
}
Serial.println("You're connected to the MQTT broker!");
Serial.println();
Serial.print("Subscribing to topic: ");
Serial.println(topic);
Serial.println();
// subscribe to a topic
mqttClient.subscribe(topic);
// topics can be unsubscribed using:
// mqttClient.unsubscribe(topic);
Serial.print("Waiting for messages on topic: ");
Serial.println(topic);
Serial.println();
}
void loop() {
// check for incoming messages
int messageSize = mqttClient.parseMessage();
if (messageSize) {
// we received a message, print out the topic and contents
Serial.print("Received a message with topic '");
Serial.print(mqttClient.messageTopic());
Serial.print("', length ");
Serial.print(messageSize);
Serial.println(" bytes:");
// use the Stream interface to print the contents
while (mqttClient.available()) {
Serial.print((char)mqttClient.read());
}
Serial.println();
Serial.println();
}
// to avoid having delays in loop, we'll use the strategy from BlinkWithoutDelay
// see: File -> Examples -> 02.Digital -> BlinkWithoutDelay for more info
unsigned long currentMillis = millis();
if (currentMillis - previousMillis >= interval) {
// save the last time a message was sent
previousMillis = currentMillis;
Serial.print("Sending message to topic: ");
Serial.println(topic);
Serial.print("echo ");
Serial.println(count);
// send message, the Print interface can be used to set the message contents
mqttClient.beginMessage(topic);
mqttClient.print("echo ");
mqttClient.print(count);
mqttClient.endMessage();
Serial.println();
count++;
}
}

View File

@@ -0,0 +1,2 @@
#define SECRET_SSID ""
#define SECRET_PASS ""

View File

@@ -0,0 +1,155 @@
/*
ArduinoMqttClient - WiFi Echo
This example connects to a MQTT broker and subscribes to a single topic,
it also publishes a message to the same topic once a second.
When a message is received it prints the message to the Serial Monitor,
it uses the callback functionality of the library.
The circuit:
- Arduino MKR 1000, MKR 1010 or Uno WiFi Rev2 board
This example code is in the public domain.
*/
#include <ArduinoMqttClient.h>
#if defined(ARDUINO_SAMD_MKRWIFI1010) || defined(ARDUINO_SAMD_NANO_33_IOT) || defined(ARDUINO_AVR_UNO_WIFI_REV2)
#include <WiFiNINA.h>
#elif defined(ARDUINO_SAMD_MKR1000)
#include <WiFi101.h>
#elif defined(ARDUINO_ARCH_ESP8266)
#include <ESP8266WiFi.h>
#elif defined(ARDUINO_PORTENTA_H7_M7) || defined(ARDUINO_NICLA_VISION) || defined(ARDUINO_ARCH_ESP32) || defined(ARDUINO_GIGA) || defined(ARDUINO_OPTA)
#include <WiFi.h>
#elif defined(ARDUINO_PORTENTA_C33)
#include <WiFiC3.h>
#elif defined(ARDUINO_UNOR4_WIFI)
#include <WiFiS3.h>
#endif
#include "arduino_secrets.h"
///////please enter your sensitive data in the Secret tab/arduino_secrets.h
char ssid[] = SECRET_SSID; // your network SSID (name)
char pass[] = SECRET_PASS; // your network password (use for WPA, or use as key for WEP)
// To connect with SSL/TLS:
// 1) Change WiFiClient to WiFiSSLClient.
// 2) Change port value from 1883 to 8883.
// 3) Change broker value to a server with a known SSL/TLS root certificate
// flashed in the WiFi module.
WiFiClient wifiClient;
MqttClient mqttClient(wifiClient);
const char broker[] = "test.mosquitto.org";
int port = 1883;
const char topic[] = "arduino/echo";
const long interval = 1000;
unsigned long previousMillis = 0;
int count = 0;
void setup() {
//Initialize serial and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for native USB port only
}
// attempt to connect to WiFi network:
Serial.print("Attempting to connect to WPA SSID: ");
Serial.println(ssid);
while (WiFi.begin(ssid, pass) != WL_CONNECTED) {
// failed, retry
Serial.print(".");
delay(5000);
}
Serial.println("You're connected to the network");
Serial.println();
// You can provide a unique client ID, if not set the library uses Arduino-millis()
// Each client must have a unique client ID
// mqttClient.setId("clientId");
// You can provide a username and password for authentication
// mqttClient.setUsernamePassword("username", "password");
Serial.print("Attempting to connect to the MQTT broker: ");
Serial.println(broker);
if (!mqttClient.connect(broker, port)) {
Serial.print("MQTT connection failed! Error code = ");
Serial.println(mqttClient.connectError());
while (1);
}
Serial.println("You're connected to the MQTT broker!");
Serial.println();
// set the message receive callback
mqttClient.onMessage(onMqttMessage);
Serial.print("Subscribing to topic: ");
Serial.println(topic);
Serial.println();
// subscribe to a topic
mqttClient.subscribe(topic);
// topics can be unsubscribed using:
// mqttClient.unsubscribe(topic);
Serial.print("Waiting for messages on topic: ");
Serial.println(topic);
Serial.println();
}
void loop() {
// call poll() regularly to allow the library to receive MQTT messages and
// send MQTT keep alives which avoids being disconnected by the broker
mqttClient.poll();
// to avoid having delays in loop, we'll use the strategy from BlinkWithoutDelay
// see: File -> Examples -> 02.Digital -> BlinkWithoutDelay for more info
unsigned long currentMillis = millis();
if (currentMillis - previousMillis >= interval) {
// save the last time a message was sent
previousMillis = currentMillis;
Serial.print("Sending message to topic: ");
Serial.println(topic);
Serial.print("echo ");
Serial.println(count);
// send message, the Print interface can be used to set the message contents
mqttClient.beginMessage(topic);
mqttClient.print("echo ");
mqttClient.print(count);
mqttClient.endMessage();
Serial.println();
count++;
}
}
void onMqttMessage(int messageSize) {
// we received a message, print out the topic and contents
Serial.print("Received a message with topic '");
Serial.print(mqttClient.messageTopic());
Serial.print("', length ");
Serial.print(messageSize);
Serial.println(" bytes:");
// use the Stream interface to print the contents
while (mqttClient.available()) {
Serial.print((char)mqttClient.read());
}
Serial.println();
Serial.println();
}

View File

@@ -0,0 +1,2 @@
#define SECRET_SSID ""
#define SECRET_PASS ""

View File

@@ -0,0 +1,118 @@
/*
ArduinoMqttClient - WiFi Simple Receive
This example connects to a MQTT broker and subscribes to a single topic.
When a message is received it prints the message to the Serial Monitor.
The circuit:
- Arduino MKR 1000, MKR 1010 or Uno WiFi Rev2 board
This example code is in the public domain.
*/
#include <ArduinoMqttClient.h>
#if defined(ARDUINO_SAMD_MKRWIFI1010) || defined(ARDUINO_SAMD_NANO_33_IOT) || defined(ARDUINO_AVR_UNO_WIFI_REV2)
#include <WiFiNINA.h>
#elif defined(ARDUINO_SAMD_MKR1000)
#include <WiFi101.h>
#elif defined(ARDUINO_ARCH_ESP8266)
#include <ESP8266WiFi.h>
#elif defined(ARDUINO_PORTENTA_H7_M7) || defined(ARDUINO_NICLA_VISION) || defined(ARDUINO_ARCH_ESP32) || defined(ARDUINO_GIGA) || defined(ARDUINO_OPTA)
#include <WiFi.h>
#elif defined(ARDUINO_PORTENTA_C33)
#include <WiFiC3.h>
#elif defined(ARDUINO_UNOR4_WIFI)
#include <WiFiS3.h>
#endif
#include "arduino_secrets.h"
///////please enter your sensitive data in the Secret tab/arduino_secrets.h
char ssid[] = SECRET_SSID; // your network SSID (name)
char pass[] = SECRET_PASS; // your network password (use for WPA, or use as key for WEP)
// To connect with SSL/TLS:
// 1) Change WiFiClient to WiFiSSLClient.
// 2) Change port value from 1883 to 8883.
// 3) Change broker value to a server with a known SSL/TLS root certificate
// flashed in the WiFi module.
WiFiClient wifiClient;
MqttClient mqttClient(wifiClient);
const char broker[] = "test.mosquitto.org";
int port = 1883;
const char topic[] = "arduino/simple";
void setup() {
//Initialize serial and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for native USB port only
}
// attempt to connect to WiFi network:
Serial.print("Attempting to connect to WPA SSID: ");
Serial.println(ssid);
while (WiFi.begin(ssid, pass) != WL_CONNECTED) {
// failed, retry
Serial.print(".");
delay(5000);
}
Serial.println("You're connected to the network");
Serial.println();
// You can provide a unique client ID, if not set the library uses Arduino-millis()
// Each client must have a unique client ID
// mqttClient.setId("clientId");
// You can provide a username and password for authentication
// mqttClient.setUsernamePassword("username", "password");
Serial.print("Attempting to connect to the MQTT broker: ");
Serial.println(broker);
if (!mqttClient.connect(broker, port)) {
Serial.print("MQTT connection failed! Error code = ");
Serial.println(mqttClient.connectError());
while (1);
}
Serial.println("You're connected to the MQTT broker!");
Serial.println();
Serial.print("Subscribing to topic: ");
Serial.println(topic);
Serial.println();
// subscribe to a topic
mqttClient.subscribe(topic);
// topics can be unsubscribed using:
// mqttClient.unsubscribe(topic);
Serial.print("Waiting for messages on topic: ");
Serial.println(topic);
Serial.println();
}
void loop() {
int messageSize = mqttClient.parseMessage();
if (messageSize) {
// we received a message, print out the topic and contents
Serial.print("Received a message with topic '");
Serial.print(mqttClient.messageTopic());
Serial.print("', length ");
Serial.print(messageSize);
Serial.println(" bytes:");
// use the Stream interface to print the contents
while (mqttClient.available()) {
Serial.print((char)mqttClient.read());
}
Serial.println();
Serial.println();
}
}

View File

@@ -0,0 +1,2 @@
#define SECRET_SSID ""
#define SECRET_PASS ""

View File

@@ -0,0 +1,125 @@
/*
ArduinoMqttClient - WiFi Simple Receive Callback
This example connects to a MQTT broker and subscribes to a single topic.
When a message is received it prints the message to the Serial Monitor,
it uses the callback functionality of the library.
The circuit:
- Arduino MKR 1000, MKR 1010 or Uno WiFi Rev2 board
This example code is in the public domain.
*/
#include <ArduinoMqttClient.h>
#if defined(ARDUINO_SAMD_MKRWIFI1010) || defined(ARDUINO_SAMD_NANO_33_IOT) || defined(ARDUINO_AVR_UNO_WIFI_REV2)
#include <WiFiNINA.h>
#elif defined(ARDUINO_SAMD_MKR1000)
#include <WiFi101.h>
#elif defined(ARDUINO_ARCH_ESP8266)
#include <ESP8266WiFi.h>
#elif defined(ARDUINO_PORTENTA_H7_M7) || defined(ARDUINO_NICLA_VISION) || defined(ARDUINO_ARCH_ESP32) || defined(ARDUINO_GIGA) || defined(ARDUINO_OPTA)
#include <WiFi.h>
#elif defined(ARDUINO_PORTENTA_C33)
#include <WiFiC3.h>
#elif defined(ARDUINO_UNOR4_WIFI)
#include <WiFiS3.h>
#endif
#include "arduino_secrets.h"
///////please enter your sensitive data in the Secret tab/arduino_secrets.h
char ssid[] = SECRET_SSID; // your network SSID (name)
char pass[] = SECRET_PASS; // your network password (use for WPA, or use as key for WEP)
// To connect with SSL/TLS:
// 1) Change WiFiClient to WiFiSSLClient.
// 2) Change port value from 1883 to 8883.
// 3) Change broker value to a server with a known SSL/TLS root certificate
// flashed in the WiFi module.
WiFiClient wifiClient;
MqttClient mqttClient(wifiClient);
const char broker[] = "test.mosquitto.org";
int port = 1883;
const char topic[] = "arduino/simple";
void setup() {
//Initialize serial and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for native USB port only
}
// attempt to connect to WiFi network:
Serial.print("Attempting to connect to WPA SSID: ");
Serial.println(ssid);
while (WiFi.begin(ssid, pass) != WL_CONNECTED) {
// failed, retry
Serial.print(".");
delay(5000);
}
Serial.println("You're connected to the network");
Serial.println();
// You can provide a unique client ID, if not set the library uses Arduino-millis()
// Each client must have a unique client ID
// mqttClient.setId("clientId");
// You can provide a username and password for authentication
// mqttClient.setUsernamePassword("username", "password");
Serial.print("Attempting to connect to the MQTT broker: ");
Serial.println(broker);
if (!mqttClient.connect(broker, port)) {
Serial.print("MQTT connection failed! Error code = ");
Serial.println(mqttClient.connectError());
while (1);
}
Serial.println("You're connected to the MQTT broker!");
Serial.println();
// set the message receive callback
mqttClient.onMessage(onMqttMessage);
Serial.print("Subscribing to topic: ");
Serial.println(topic);
Serial.println();
// subscribe to a topic
mqttClient.subscribe(topic);
// topics can be unsubscribed using:
// mqttClient.unsubscribe(topic);
Serial.print("Waiting for messages on topic: ");
Serial.println(topic);
Serial.println();
}
void loop() {
// call poll() regularly to allow the library to receive MQTT messages and
// send MQTT keep alives which avoids being disconnected by the broker
mqttClient.poll();
}
void onMqttMessage(int messageSize) {
// we received a message, print out the topic and contents
Serial.println("Received a message with topic '");
Serial.print(mqttClient.messageTopic());
Serial.print("', length ");
Serial.print(messageSize);
Serial.println(" bytes:");
// use the Stream interface to print the contents
while (mqttClient.available()) {
Serial.print((char)mqttClient.read());
}
Serial.println();
Serial.println();
}

View File

@@ -0,0 +1,2 @@
#define SECRET_SSID ""
#define SECRET_PASS ""

View File

@@ -0,0 +1,119 @@
/*
ArduinoMqttClient - WiFi Simple Sender
This example connects to a MQTT broker and publishes a message to
a topic once a second.
The circuit:
- Arduino MKR 1000, MKR 1010 or Uno WiFi Rev2 board
This example code is in the public domain.
*/
#include <ArduinoMqttClient.h>
#if defined(ARDUINO_SAMD_MKRWIFI1010) || defined(ARDUINO_SAMD_NANO_33_IOT) || defined(ARDUINO_AVR_UNO_WIFI_REV2)
#include <WiFiNINA.h>
#elif defined(ARDUINO_SAMD_MKR1000)
#include <WiFi101.h>
#elif defined(ARDUINO_ARCH_ESP8266)
#include <ESP8266WiFi.h>
#elif defined(ARDUINO_PORTENTA_H7_M7) || defined(ARDUINO_NICLA_VISION) || defined(ARDUINO_ARCH_ESP32) || defined(ARDUINO_GIGA) || defined(ARDUINO_OPTA)
#include <WiFi.h>
#elif defined(ARDUINO_PORTENTA_C33)
#include <WiFiC3.h>
#elif defined(ARDUINO_UNOR4_WIFI)
#include <WiFiS3.h>
#endif
#include "arduino_secrets.h"
///////please enter your sensitive data in the Secret tab/arduino_secrets.h
char ssid[] = SECRET_SSID; // your network SSID (name)
char pass[] = SECRET_PASS; // your network password (use for WPA, or use as key for WEP)
// To connect with SSL/TLS:
// 1) Change WiFiClient to WiFiSSLClient.
// 2) Change port value from 1883 to 8883.
// 3) Change broker value to a server with a known SSL/TLS root certificate
// flashed in the WiFi module.
WiFiClient wifiClient;
MqttClient mqttClient(wifiClient);
const char broker[] = "test.mosquitto.org";
int port = 1883;
const char topic[] = "arduino/simple";
const long interval = 1000;
unsigned long previousMillis = 0;
int count = 0;
void setup() {
//Initialize serial and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for native USB port only
}
// attempt to connect to WiFi network:
Serial.print("Attempting to connect to WPA SSID: ");
Serial.println(ssid);
while (WiFi.begin(ssid, pass) != WL_CONNECTED) {
// failed, retry
Serial.print(".");
delay(5000);
}
Serial.println("You're connected to the network");
Serial.println();
// You can provide a unique client ID, if not set the library uses Arduino-millis()
// Each client must have a unique client ID
// mqttClient.setId("clientId");
// You can provide a username and password for authentication
// mqttClient.setUsernamePassword("username", "password");
Serial.print("Attempting to connect to the MQTT broker: ");
Serial.println(broker);
if (!mqttClient.connect(broker, port)) {
Serial.print("MQTT connection failed! Error code = ");
Serial.println(mqttClient.connectError());
while (1);
}
Serial.println("You're connected to the MQTT broker!");
Serial.println();
}
void loop() {
// call poll() regularly to allow the library to send MQTT keep alives which
// avoids being disconnected by the broker
mqttClient.poll();
// to avoid having delays in loop, we'll use the strategy from BlinkWithoutDelay
// see: File -> Examples -> 02.Digital -> BlinkWithoutDelay for more info
unsigned long currentMillis = millis();
if (currentMillis - previousMillis >= interval) {
// save the last time a message was sent
previousMillis = currentMillis;
Serial.print("Sending message to topic: ");
Serial.println(topic);
Serial.print("hello ");
Serial.println(count);
// send message, the Print interface can be used to set the message contents
mqttClient.beginMessage(topic);
mqttClient.print("hello ");
mqttClient.print(count);
mqttClient.endMessage();
Serial.println();
count++;
}
}

View File

@@ -0,0 +1,2 @@
#define SECRET_SSID ""
#define SECRET_PASS ""

View File

@@ -0,0 +1,52 @@
############################################
# Syntax Coloring Map For ArduinoMqttClient
############################################
# Class
############################################
ArduinoMqttClient KEYWORD1
MqttClient KEYWORD1
############################################
# Methods and Functions
############################################
onMessage KEYWORD2
parseMessage KEYWORD2
messageTopic KEYWORD2
messageDup KEYWORD2
messageQoS KEYWORD2
messageRetain KEYWORD2
beginMessage KEYWORD2
endMessage KEYWORD2
beginWill KEYWORD2
endWill KEYWORD2
subscribe KEYWORD2
unsubscribe KEYWORD2
poll KEYWORD2
connect KEYWORD2
write KEYWORD2
available KEYWORD2
read KEYWORD2
peek KEYWORD2
flush KEYWORD2
stop KEYWORD2
connected KEYWORD2
setId KEYWORD2
setUsernamePassword KEYWORD2
setCleanSession KEYWORD2
setKeepAliveInterval KEYWORD2
setConnectionTimeout KEYWORD2
connectError KEYWORD2
subscribeQoS KEYWORD2
############################################
# Constants
############################################

View File

@@ -0,0 +1,10 @@
name=ArduinoMqttClient
version=0.1.8
author=Arduino
maintainer=Arduino <info@arduino.cc>
sentence=[BETA] Allows you to send and receive MQTT messages using Arduino.
paragraph=
category=Communication
url=https://github.com/arduino-libraries/ArduinoMqttClient
architectures=*
includes=ArduinoMqttClient.h

View File

@@ -0,0 +1,25 @@
/*
This file is part of the ArduinoMqttClient library.
Copyright (c) 2019 Arduino SA. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _ARDUINO_MQTT_CLIENT_H_
#define _ARDUINO_MQTT_CLIENT_H_
#include "MqttClient.h"
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,200 @@
/*
This file is part of the ArduinoMqttClient library.
Copyright (c) 2019 Arduino SA. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _MQTT_CLIENT_H_
#define _MQTT_CLIENT_H_
#include <Arduino.h>
#include <Client.h>
#define MQTT_CONNECTION_REFUSED -2
#define MQTT_CONNECTION_TIMEOUT -1
#define MQTT_SUCCESS 0
#define MQTT_UNACCEPTABLE_PROTOCOL_VERSION 1
#define MQTT_IDENTIFIER_REJECTED 2
#define MQTT_SERVER_UNAVAILABLE 3
#define MQTT_BAD_USER_NAME_OR_PASSWORD 4
#define MQTT_NOT_AUTHORIZED 5
// Make this definition in your application code to use std::functions for onMessage callbacks instead of C-pointers:
// #define MQTT_CLIENT_STD_FUNCTION_CALLBACK
#ifdef MQTT_CLIENT_STD_FUNCTION_CALLBACK
#include <functional>
#endif
class MqttClient : public Client {
public:
MqttClient(Client* client);
MqttClient(Client& client);
virtual ~MqttClient();
#ifdef MQTT_CLIENT_STD_FUNCTION_CALLBACK
typedef std::function<void(MqttClient *client, int messageSize)> MessageCallback;
void onMessage(MessageCallback callback);
#else
inline void setClient(Client& client) { _client = &client; }
void onMessage(void(*)(int));
#endif
int parseMessage();
String messageTopic() const;
int messageDup() const;
int messageQoS() const;
int messageRetain() const;
int beginMessage(const char* topic, unsigned long size, bool retain = false, uint8_t qos = 0, bool dup = false);
int beginMessage(const String& topic, unsigned long size, bool retain = false, uint8_t qos = 0, bool dup = false);
int beginMessage(const char* topic, bool retain = false, uint8_t qos = 0, bool dup = false);
int beginMessage(const String& topic, bool retain = false, uint8_t qos = 0, bool dup = false);
int endMessage();
int beginWill(const char* topic, unsigned short size, bool retain, uint8_t qos);
int beginWill(const String& topic, unsigned short size, bool retain, uint8_t qos);
int beginWill(const char* topic, bool retain, uint8_t qos);
int beginWill(const String& topic, bool retain, uint8_t qos);
int endWill();
int subscribe(const char* topic, uint8_t qos = 0);
int subscribe(const String& topic, uint8_t qos = 0);
int unsubscribe(const char* topic);
int unsubscribe(const String& topic);
void poll();
// from Client
virtual int connect(IPAddress ip, uint16_t port = 1883);
virtual int connect(const char *host, uint16_t port = 1883);
#ifdef ESP8266
virtual int connect(const IPAddress& ip, uint16_t port) { return 0; }; /* ESP8266 core defines this pure virtual in Client.h */
#endif
virtual size_t write(uint8_t);
virtual size_t write(const uint8_t *buf, size_t size);
virtual int available();
virtual int read();
virtual int read(uint8_t *buf, size_t size);
virtual int peek();
virtual void flush();
virtual void stop();
virtual uint8_t connected();
virtual operator bool();
void setId(const char* id);
void setId(const String& id);
void setUsernamePassword(const char* username, const char* password);
void setUsernamePassword(const String& username, const String& password);
void setCleanSession(bool cleanSession);
void setKeepAliveInterval(unsigned long interval);
void setConnectionTimeout(unsigned long timeout);
void setTxPayloadSize(unsigned short size);
int connectError() const;
int subscribeQoS() const;
#ifdef ESP8266
virtual bool flush(unsigned int /*maxWaitMs*/) { flush(); return true; } /* ESP8266 core defines this pure virtual in Client.h */
virtual bool stop(unsigned int /*maxWaitMs*/) { stop(); return true; } /* ESP8266 core defines this pure virtual in Client.h */
#endif
private:
int connect(IPAddress ip, const char* host, uint16_t port);
int publishHeader(size_t length);
void puback(uint16_t id);
void pubrec(uint16_t id);
void pubrel(uint16_t id);
void pubcomp(uint16_t id);
void ping();
void disconnect();
int beginPacket(uint8_t type, uint8_t flags, size_t length, uint8_t* buffer);
int writeString(const char* s, uint16_t length);
int write8(uint8_t val);
int write16(uint16_t val);
int writeData(const void* data, size_t length);
int endPacket();
void ackRxMessage();
uint8_t clientConnected();
int clientAvailable();
int clientRead();
int clientTimedRead();
int clientPeek();
size_t clientWrite(const uint8_t *buf, size_t size);
private:
Client* _client;
#ifdef MQTT_CLIENT_STD_FUNCTION_CALLBACK
MessageCallback _onMessage;
#else
void (*_onMessage)(int);
#endif
String _id;
String _username;
String _password;
bool _cleanSession;
unsigned long _keepAliveInterval;
unsigned long _connectionTimeout;
unsigned short _tx_payload_buffer_size;
int _connectError;
bool _connected;
int _subscribeQos;
int _rxState;
uint8_t _rxType;
uint8_t _rxFlags;
size_t _rxLength;
uint32_t _rxLengthMultiplier;
int _returnCode;
String _rxMessageTopic;
size_t _rxMessageTopicLength;
bool _rxMessageDup;
uint8_t _rxMessageQoS;
bool _rxMessageRetain;
uint16_t _rxPacketId;
uint8_t _rxMessageBuffer[3];
size_t _rxMessageIndex;
unsigned long _lastRx;
String _txMessageTopic;
bool _txMessageRetain;
uint8_t _txMessageQoS;
bool _txMessageDup;
uint16_t _txPacketId;
uint8_t* _txBuffer;
size_t _txBufferIndex;
bool _txStreamPayload;
uint8_t* _txPayloadBuffer;
size_t _txPayloadBufferIndex;
unsigned long _lastPingTx;
uint8_t* _willBuffer;
uint16_t _willBufferIndex;
size_t _willMessageIndex;
uint8_t _willFlags;
};
#endif